澳门新濠新天地3559_www.3559.com新濠新天地网址

您的位置:新天地3559 > 电工电气 > 开关电路产生电流尖峰信号,电磁兼容简称EMC(

开关电路产生电流尖峰信号,电磁兼容简称EMC(

2019-09-04 17:46

采用交流输入EMI滤波器

电磁干扰 (EMI,Electromagneticlnterference)是一种电子系统或分系统受非预期的电磁扰动造成的性能损害。它由三个基本要素组成:干扰源,即产生电磁干扰能量的设备;藕合途径,即传输电磁干扰的通路或媒介;敏感设备,即受电磁干扰而被损害的器件、设备、分系统或系统。基于此,控制电磁干扰的基本措施就是:抑制干扰源、切断祸合途径及降低敏感设备对干扰的响应或增加电磁敏感性电平。

由于现在开关电源的速度越来越快,功率越来越高,密度越来越大,必然会产生干扰问题,我们就要解决这个干扰。干扰分为两个方面,一个是干扰其他的电器产品,简称EMI(electromagnetic interference)电磁干扰;另一个是被其他电器产品干扰,也叫抗干扰性,我们用EMS(electromagnetic susceptibility)表示。因此,做电磁兼容,实际上是做这两个部分,电磁兼容简称EMC(electromagnetic compatibility),我们这里主要是讨论EMC的问题。

首先我们来看一下能够影响到EMI/EMC的几个因素:驱动电源的电路结构;开关频率、接地、PCB设计、智能LED电源的复位电路设计。由于最初的LED电源就是线性电源,但是线性电源在工作时会以发热的形式损耗大量能量。线性电源的工作方式,使他从高压变低压必须有将压装置,一般的都是变压器,再经过整流输出直流电压。虽然笨重,发热量大,优点是,对外干扰小,电磁干扰小,也容易解决。而现在使用比较多的LED开关电源,都是以 PWM形式的LED驱动电源是让功率晶体管工作在导通和关断状态。在导通时,电压低,电流大;关断时,电压高,电流小,因此功率半导体器件上所产生的损耗也很小。缺点比较明显的是,电磁干扰也更严重。

通常干扰电流在导线上传输时有两种方式:共模方式和差模方式。共模干扰是载流体与大地之间的干扰:干扰大小和方向一致,存在于电源任何一相对大地、或中线 对大地间,主要是由du/dt产生的,di/dt也产生一定的共模干扰。而差模干扰是载流体之间的干扰:干扰大小相等、方向相反,存在于电源相线与中线及 相线与相线之间。干扰电流在导线上传输时既可以共模方式出现,也可以差模方式出现;但共模干扰电流只有变成差模干扰电流后,才能对有用信号构成干扰。

根据开关电源工作原理知:开关电源首先将工频交流电整流为直流电,再逆变为高频交流电,最后经过整流滤波输出,得到稳定的直流电压。在电路中,功率三极管、二极管主要工作在开关管状态,且工作在微秒量级;三极管、二极管在开一闭翻转过程中,在上升、下降时间内电流变化大、易产生射频能量,形成干扰源。同时,由于变压器的漏感和输出二极管的反向恢复电流造成的尖峰,也会形成潜在的电磁干扰。

电磁兼容从两个方面去考虑:一方面,一般性产品都有电源引入线和产品本身的器件组成,做电磁兼容需要消除电源线上引入的外部噪音,以及电气产品产生的噪音;另一方面,还要避免向外部发出噪音干扰,这样在自己正常工作的同时也不影响别人。

LED电源的电磁兼容出现问题一般是开关电路的电源中。而开关电路是开关电源的主要干扰源之一。开关电路是LED驱动电源的核心,开关电路主要由开关管和高频变压器组成。它产生的du/dt具有较大幅度的脉冲,频带较宽且谐波丰富。这种高频脉冲干扰产生的主要原因是:开关管负载为高频变压器初级线圈,是感性负载。导通瞬间,初级线圈产生很大的涌流,并在初级线圈的两端出现较高的浪涌尖峰电压;断开瞬间,由于初级线圈的漏磁通,致使部分能量没有从一次线圈传输到二次线圈,电路中形成带有尖峰的衰减振荡,叠加在关断电压上,形成关断电压尖峰。高频脉冲产生更多的发射,周期性信号产生更多的发射。在LED电源系统中,开关电路产生电流尖峰信号,而当负载电流变化时也会产生电流尖峰信号。这就电磁干扰根源之一。

交流电源输人线上存在以上两种干扰,通常为低频段差模干扰和高频段共模干扰。在一般情况下差模干扰幅度小、频率低、造成的干扰小;共模干扰幅度大、频率高, 还可以通过导线产生辐射,造成的干扰较大。若在交流电源输人端采用适当的EMI滤波器,则可有效地抑制电磁干扰。电源线EMI滤波器基本原理如图1所示, 其中差模电容C1、C2用来短路差模干扰电流,而中间连线接地电容C3、C4则用来短路共模干扰电流。共模扼流圈是由两股等粗并且按同方向绕制在一个磁芯 上的线圈组成。如果两个线圈之间的磁藕合非常紧密,那么漏感就会很小,在电源线频率范围内差模电抗将会变得很小;当负载电流流过共模扼流圈时,串联在相线上的线圈所产生的磁力线和串联在中线上线圈所产生的磁力线方向相反,它们在磁芯中相互抵消。 因此即使在大负载电流的情况下,磁芯也不会饱和。而对于共模干扰电流,两个线圈产生的磁场是同方向的,会呈现较大电感,从而起到衰减共模干扰信号的作用。 这里共模扼流圈要采用导磁率高、频率特性较佳的铁氧体磁性材料。

开关电源通常工作在高频状态,频率在02 kHz以上,因而其分布电容不可忽略。一方面散热片与开关管的集电极间的绝缘片,由于其接触面积较大,绝缘片较薄,因此,两者间的分布电容在高频时不能忽略,高频电流会通过分布电容流到散热片上,再流到机壳地,产生共模千扰;另一方面脉冲变压器的初次级之间存在着分布电容,可将初级绕组电压直接祸合到次级绕组上,在次级绕组作直流输出的两条电源线上产生共模干扰。

图片 1

基本上在所有电磁干扰问题的题目中,主要是因为不适当的接地引起的。有三种信号接地方法:单点、多点和混合。在开关电路频率低于1MHz时,可采用单点接地方法,但不适宜高频;在高频应用中,最好采用多点接地。混合接地是低频用单点接地,而高频用多点接地的方法。地线布局是关键,高频数字电路和低电平模拟电路的接地电路尽不能混合。可以说适当的印刷电路板布线对防止EMI是至关重要的。在LED电源中,有不少智能LED电源采用单片机控制,并且有的LED电源采用单片机控制开关电路的占空比,单片机的看门狗系统对整个LED电源的运行起着特别重要的作用,由于所有的干扰源不可能全部被隔离或往除,一旦进进CPU干扰程序的正常运行,那么复位系统结合软件处理措施就成了一道有效的纠错防御的屏障了。常用的复位系统有以下两种:①外部复位系统。外部“看门狗”电路可以自己设计也可以用专门的“看门狗”芯片来搭建。这样,假如程序系统陷进一个死循环,而该循环中恰巧有着“喂狗”信号的话,那么该复位电路就无法实现它的应有的功能了。②现在越来越多的LED电源都带有自己的片上复位系统,这样用户就可以很方便的使用其内部的复位定时器了,但是,有些智能LED电源的控制电路复位指令太过于简单,这样也会存在象上述死循环那样的“喂狗”指令,使其失往监控作用。

图片 2

因此 , 开关电源中的干扰源主要集中在电压、电流变化大,如开关管、二极管、高频变压器等元件,以及交流输人、整流输出电路部分。

一般来讲,我们把输入的无用信号,统称为噪音。要想理解以上问题,我们需要知道什么叫噪音。最早的时候,由于电源发出一些声响,我们把这样的声响称为噪音,但是实际上人耳接受频段的能力是有限的,2Hz-2KHz。实际上更多的频段的信息(无用信号)是人耳听不见的,因此我们把凡是对器件本身无用的信号称为噪音。

图片 3

抑制开关电源电磁干扰的措施

噪音按照传播路径来分,可以分为传导噪音干扰,和空间噪音干扰。其传导干扰,主要通过导体传播。通过导电介质,把一个电网络上的介质,耦合到另一个电网络。那么这个更多的是由电场中电子运动引起的,因此它的频谱带宽并不高,在30M以下。另外一种,由于电子运转速度越快和电流的变化速度越快产生了磁场,而磁场之间又是相互耦合,我们把这样的现象称为电磁场。电磁场由于频谱较高,一般在30 Hz-30 ZHz,由于带宽高,斜率陡,它更容易向空间辐射,我们把这样的干扰称为辐射干扰,所以解决EMC的问题是解决传导干扰和辐射干扰这两类问题。从技术角度来说是解决电场和电磁场问题。由于这些干扰对产品产生负面影响,甚至不能够正常工作,所以我们尽可能消灭它。那么从原理来说,我们只要衰减这些信号波,干扰波,让它们的破坏降低就可以了。从方法角度来说,我们一般用滤波器来进行衰减,甚至消除。那么传导噪音干扰,一般可以通过设计滤波电路,或者增加滤波器的方法来进行抑制和衰减。也可以采用双绞线,或同轴电缆的方式。而空间辐射干扰则主要通过密封屏蔽技术在结构上实行电磁屏蔽。比如说可以用带屏蔽层的电源线,结构上可以用电源罩。比如笔记本电脑上采用屏蔽贴,一些产品上镀一层导电漆来进行屏蔽。

要解决LED驱动电源的电磁干扰问题,从硬件上可从以下几个方面入手:

通常开关电源EMI控制主要采用滤波技术、屏蔽技术、密封技术、接地技术等。EMI干扰按传播途径分为传导干扰和辐射干扰。开关电源主要是传导干扰,且频率范围最宽,约为10kHz一30MHz。抑制传导干扰的对策基本上10kHz一150kHz、150kHz一10MHz、10MHz以上三个频段来解决。10kHz一150kHz范围内主要是常态干扰,一般采用通用LC滤波器来解决。150kHz一10 MHz范围内主要是共模干扰,通常采用共模抑制滤波器来解决。10MHz以上频段的对策是改进滤波器的外形以及采取电磁屏蔽措施。

综上所述,电磁干扰分为传导干扰,空间干扰;传导干扰又分共模干扰和差模干扰,那么空间干扰又分辐射干扰和感应干扰;感应干扰又分电场耦合和磁场耦合。

1.减少开关电源本身的干扰:软开关技术,在原有的硬开关电路中增加电感和电容元件,利用电感和电容的谐振,降低开关过程中的du/dt和di/dt,使开关器件开通时电压的下降先于电流的上升,或关断时电流的下降先于电压的上升,来消除电压和电流的重叠。开关频率调制技术,通过调制开关频率fc,把集中在fc及其谐波2fc、3fc…上的能量分散到它们周围的频带上,以降低各个频点上的EMI幅值。元器件的选择,选择不易产生噪声、不易传导和辐射噪声的元器件。通常特别值得注意的是,二极管和变压器等绕组类元器件的选用。反向恢复电流小、恢复时间短的快速恢复二极管是开关电源高频整流部分的理想器件。合理使用电磁干扰滤波器,EMI滤波器的主要目的之一,电网噪声是电磁干扰的一种,它属于射频干扰,其传导噪声的频谱大致为10KHz~30MHz,最高可达150MHz.在一般情况下,差模干扰幅度小,频率低,所造成的干扰较小;共模干扰幅度大,频率高,还可以通过导线产生辐射,所造成的干扰较大。欲削弱传导干扰,最有效的方法就是在开关电源输入和输出电路中加装电磁干扰滤波器。LED电源一般采用简易式单级EMI滤波器,主要包括共模扼流圈和滤波电容。EMI滤波器能有效抑制开关电源适配器的电磁干扰。

采用交流输入EMI滤波器

那么,构成干扰要有三要素,骚扰源,传播途径,敏感设备。骚扰源分两种,一种是电场的骚扰源,一种是磁场的骚扰源。

2.通过切断干扰信号的传播途径来减少电磁干扰问题:第一种情况是电源线干扰可以使用电源线滤波器滤除。一个合理有效的开关电源EMI滤波器应该对电源线上差模和共模干扰都有较强的抑制作用。改善PCB板的电磁兼容性设计PCB是LED电源系统中电路元件和器件的支撑件,它提供电路元件和器件之间的电气连接。随着电子技术的飞速发展,PCB的密度越来越高。PCB设计的好坏对LED电源系统的电磁兼容性影响很大。实践证实,即使电路原理图设计正确,印刷电路板设计不当,也会对LED电源系统的可靠性产生不利影响。PCB抗干扰设计主要包括PCB布局、布线及接地,其目的是减小PCB的电磁辐射和PCB上电路之间的串扰。还有,一般变压器电磁干扰引发的交流声频率一般为50HZ左右,而地线布线不当导致的交流声,由于整流电路的倍频作用频率约为100HZ,仔细区分还是可以察觉的。因此,在设计印刷电路板的时候,应留意采用正确的方法,遵守PCB设计的一般原则,并应符合抗干扰的设计要求。

通常干扰电流在导线上传输时有两种方式:共模方式和差模方式。共模干扰是载流体与大地之间的干扰:干扰大小和方向一致,存在于电源任何一相对大地、或中线对大地间,主要是由du/dt产生的,di/dt也产生一定的共模干扰。而差模干扰是载流体之间的干扰:干扰大小相等、方向相反,存在于电源相线与中线及相线与相线之间。干扰电流在导线上传输时既可以共模方式出现,也可以差模方式出现;但共模干扰电流只有变成差模干扰电流后,才能对有用信号构成干扰。

图片 4

3.主动大幅增强受干扰体的抗干扰能力:在LED电源系统中输进/输出也是干扰源的传导线,和接收射频干扰信号的拾检源,我们设计时一般要采取有效的措施:采用必要的共模/差模抑制电路,同时也要采取一定的滤波和防电磁屏蔽措施以减小干扰的进进。在条件许可的情况下尽可能采取各种隔离措施(如光电隔离或者磁电隔离),从而阻断干扰的传播。防雷击措施,室外使用的LED电源系统或从室外排挤引进室内的电源线、信号线,要考虑系统的防雷击题目。常用的防雷击器件有:气体放电管、TVS(Transient Voltage Suppression)等。气体放电管是当电源的电压大于某一数值时,通常为数十V或数百V,气体击穿放电,将电源线上强冲击脉冲导进大地。TVS可以看成两个并联且方向相反的齐纳二极管,当两端电压高于某一值时导通。其特点是可以瞬态通过数百乃上千A的电流。

交流电源输人线上存在以上两种干扰,通常为低频段差模干扰和高频段共模干扰。在一般情况下差模干扰幅度小、频率低、造成的干扰小;共模干扰幅度大、频率高,还可以通过导线产生辐射,造成的干扰较大。若在交流电源输人端采用适当的EMI滤波器,则可有效地抑制电磁干扰。电源线EMI滤波器基本原理如图1所示,其中差模电容C1、C2用来短路差模干扰电流,而中间连线接地电容C3、C4则用来短路共模干扰电流。共模扼流圈是由两股等粗并且按同方向绕制在一个磁芯上的线圈组成。如果两个线圈之间的磁藕合非常紧密,那么漏感就会很小,在电源线频率范围内差

在电路设计中如何解决共模干扰和差模干扰?

通过本文我们可以总结出针对于LED电源EMC/EMI的主要几个控制技术是:电路措施、EMI滤波、元器件选择、屏蔽和印制电路板抗干扰设计等。如果能正确合理的对这些问题进行解决,通过LED驱动电源顺利通过3C认证,不是问题!

模电抗将会变得很小;当负载电流流过共模扼流圈时,串联在相线上的线圈所产生的磁力线和串联在中线上线圈所产生的磁力线方向相反,它们在磁芯中相互抵消。因此即使在大负载电流的情况下,磁芯也不会饱和。而对于共模干扰电流,两个线圈产生的磁场是同方向的,会呈现较大电感,从而起到衰减共模干扰信号的作用。这里共模扼流圈要采用导磁率高、频率特性较佳的铁氧体磁性材料。

上文提到的传导噪音干扰,又分为差模干扰和共模干扰两种。差模干扰是指两条电源线之间(wire to wire)的,主要通过选择合适的电容(X电容,也称安规电容),和差模线圈来进行抑制和衰减。共模干扰则是两条电源线分别对大地(简称线对地)的,主要通过选择合适的电容(Y电容,也是安规级别的),和共模线圈来进行抑制和衰减。我们常用的低通滤波器,一般会同时具有抑制共模和差模干扰的功能。

图片 5

图片 6

如图1,3为差模电容,2为共模电感,4为共模电容。

1,2,3共同组成的叫π型滤波器,1,3组成的电容主要是滤两根线之间的信号差,因此而得名。一般这两个电容的取值在0.22 uf-1.5 uf。在出现干扰超标的时候,一般解决方法是把这两个电容的值加大,但随着电容容值加大,会导致漏电流加大,这点需要注意。

2为共模电感,这个上面有两根独立的线圈,方向相反的绕制在同一个圆形闭合的磁芯上,当有差分信号通过时,由于这两根导线大小相等,反向相反,因此产生的磁场相互抵消了。共模电感的感量选型一般在几百微亨到几毫亨级别。4为共模电容,这两个电容由于分别连接着L和N两根线且对地的,呈Y型状,因此而得名。它们的取值一般在2200pF-6800pF,其值越大,越容易解决干扰问题,但是漏电也越大,取值要甚重。

当电路中的正常电流流经共模电感时,电流在同相位绕制的电感线圈中产生反向的磁场而相互抵消,此时正常信号电流主要受线圈电阻的影响(和少量因漏感造成的阻尼);当有共模电流流经线圈时,由于共模电流的同向性,会在线圈内产生同向的磁场而增大线圈的感抗,使线圈表现为高阻抗,产生较强的阻尼效果,以此衰减共模电流,达到滤波的目的。

 

一般 滤波器不单独使用差模线圈,因为共模电感两边绕线不一致等原因,电感必定不会相同,因此能起到一定的差模电感的作用。如果差模干扰比较严重,就要追加差模线圈。

差模干扰:简单的说就是线对线的干扰。

图片 7

如图,我们可以看到差模的原理图。UDM 就是差模电压,IDM 就是差模电流。IDM 大小相同,方向相反。

差模干扰产生的原因

差模干扰中的干扰是起源在同一电源线路之中(直接注入)。如同一线路中工作的电机,开关电源,可控硅等,他们在电源线上所产生的干扰就是差模干扰

如何影响设备。

差模干扰直接作用在设备两端的,直接影响设备工作,甚至破坏设备。(表现为尖峰电压,电压跌落及中断。)

如何滤除差模干扰

主要采用差模电感和差模电容。

差模电感的工作原理:

图片 8

图片 9

可以看到,当电流流过差模线圈之后,线圈里面的磁通是增强的,相当于两个磁通之和。线圈特性 低频率低阻抗 高频率高阻抗 决定了在高频时利用它的高阻抗衰减差模信号。(如图下图所示)

当频率为50Hz时,线圈阻抗接近于0,相当于一根导线,不起任何衰减作用。

当频率为500k Hz时,阻抗达到5k 欧,而理想状态下,此时负载阻抗一般考虑为50欧。

根据上面公司,此时差模线圈分得了99%的差模干扰电压。而负载只分得了1%的差模干扰电压。

同时,电流也有很大的衰减。(可以算出此时线圈的差模插入损耗)

图片 10

差模电容工作原理:

图片 11

图片 12

可以看到:

电容特性 低频率高阻抗 高频率低阻抗。滤波器利用电容在高频时它的低阻抗短路掉差模干扰。(如下图所示:)

当频率为50Hz时,电容阻抗趋近于无穷大,相当于短路,不起任何衰减作用。

当频率为500k Hz时,电容阻抗很小,根据上式可以看到,差模复杂的电流衰减为趋近于0。

如当频率为500k Hz时,负载50欧,容抗0.05欧。

此时电容分得了99.9%的差模干扰电流,而负载只分得了0.1%的差模干扰电流。

也就是说500k Hz 时,电容使得差模干扰下降了30dB。

图片 13

共模:就是同时对地的干扰

图片 14

如图,我们可以看到共模的原理图,UPQ 就是共模电压,ICM1 ICM2就是共模电流。ICM1 ICM2大小不一定相同,方向相同。

共模干扰产生的原因很多,主要原因有以下几点。

1.电网串入共模干扰电压。

2.辐射干扰(如雷击,设备电弧,附近电台,大功率辐射源)在心啊后线上感应出共模干扰。(原理是 交变的磁场 产生交变的电流,犹豫地线,零线回路面积与地线 火线回路面积不相同,两个回路阻抗不通等原因造成电流大小不同)

3.接地电压不一样,也就是说电位差异引入共模干扰

4.也包括设备内部电线 对电源线的影响。

如何影响设备

共模电压有时较大,特别是采用隔离性能差的配电供电室。变送器输出信号的共模电压普遍较高,有的可高达130V以上。共模电压通过不对称电流可转换成差模电压,直接影响测控信号。造成元器件损坏,这种共模干扰可为直流,亦可为交流。如图

图片 15

ICM2 近似等于ICM1:而Z1不等于Z2;UP=ICM2*ZCM2;UQ=ICM1*ZCM1

所以UP不等于UQ,从未转换为差模电压UPQ

也就是说,共模干扰不直接影响设备,而是通过转化为差模电压来影响设备。

如何滤除共模干扰(共模线圈 共模电容)

共模线圈

图片 16

图片 17

共模线圈和差模线圈原理比较类似,都是利用线圈高频时的高阻抗来衰减干扰信号。

共模线圈和差模线圈绕线方法刚好相反(如图)

因为差模线圈在滤除干扰的同时,还会一定程度的增加阻抗。而共模线圈对方向相反的电流基本不起作用。所以我们在能够满足特性的前提下,一般很少使用差模线圈。

 

共模电容的工作原理

图片 18

图片 19

共模电容的工作原理和差模电容的工作原理是一致的,

都是利用电容的高频低阻抗,使高频干扰信号短路,而低频时电路不受任何影响。

只是差模电容是两极之间短路。而共模电容是线对地短路。

广告时间:


众筹:基于实际项目,张飞反激开关电源设计实战套件:PCB板 配套元器件 49集视频

为了给想学习电源技术而找不到途径的新人和想更进一步巩固电源技术的在职电源工程师一个学习平台,此次知名资深电源工程师张飞,花了整整6个月的时间做了一个反激开关电源实际项目,把整个项目的过程以视频的方式记录了下来;一边做项目一边讲解,同时将其录制。

图片 20

本项目具有实战性,在实际操作中进行深度剖析讲解,手把手带你进行电路设计、PCBA调试与测试,展示整个反激开关电源设计过程。

**长按二维码进入众筹抢购页面


图片 21

视频教程精彩片段截屏

图片 22

 边画原理图边讲解

图片 23

边实验边讲解

图片 24

原理图设计讲解

图片 25

示波器调试讲解

图片 26

     波形绘制讲解

图片 27

驱动电路讲解

本文由新天地3559发布于电工电气,转载请注明出处:开关电路产生电流尖峰信号,电磁兼容简称EMC(

关键词: